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ABSTRACT 

In [9], Mauldin, Preiss and von Weizs~cker have given a theorem represent- 

ing transition kernels (atomless and between standard Borel spaces) by a 

planar model. Here, motivated by measure-theoretic as well as probabilis- 
tic considerations, we generalize by allowing the parametrizing space X to 
be arbitrary, with an arbitrary a-field of "Borer' subsets, and allowing the 
corresponding measures to have atoms. (We also, for convenience rather 
than generality, allow arbitrary finite measures rather than probability 

ones.) The transition kernel is replaced by a substantially equivalent one 
from X to X x I that is "sectioned", hence completely orthogonal. This 
is shown to be isomorphic to a model in which the image space consists of 

3 specifically defined subsets of X x R: an ordinate set (in which vertical 
sections have Lebesgue measure), an "atomic" set contained in X x ( -N),  
and a "singular" set with null sections. The method incidentally produces 
and exploits a "reverse" transition kernel from X to X x I. Some further 
extensions are briefly discussed; in particular, allowing "uniformly a-finite" 
measures (in the "standard" case) leads to a generalization that includes 

the planar representation theorem of Rokhlin [10] and the author [5]; cf. 
also [7, 2]. 

1. I n t r o d u c t i o n  

1.1 Let  (X , .A)  a n d  (Y ,B)  be  "Borel  s t r u c t u r e s "  in  the  sense  of  Mackey  [41 (or  

" m e a s u r a b l e  spaces"  in  the  sense  of  Ha lmos ) ;  t h a t  is, A is a g iven  a - f i e ld  of 

subse t s  of  the  set X ,  a n d  B is a a - f ie ld  of subse t s  of Y.  We  o f t en  refer to  t he  

m e m b e r s  of A a n d  B as "Borel  se ts" ,  t h o u g h  in  genera l  t he re  is n o  t opo logy  
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involved. A "transition kernel" from (X,B) to (Y,B) (in the sense of [91) is a 

map # assigning to each x E X a probability measure #z on (Y, B) in such a way 

that,  for all B E B, the function x ~ #z(B) is .A-measurable. In [9, p. 974] a 

representation theorem for transition kernels was proved under the assumptions 

that  (a) the spaces (X, A) and (Y, B) are uncountable and "standard" (in effect, 

isomorphic to the unit interval I with its usual Borel sets), (b) the measures 

# ,  are non-atomic. Our object here is to consider the more general situation 

in which (X, A) is an arbiIrary Borel structure and the measures #~ may have 

atoms. (But we shall still require (Y, B) to be standard.) In fact, we allow the #~'s 

to be arbitrary finite (non-negative, a-additive) measures on B, a situation later 

extended (9.4 below) to allow certain infinite measures (the "uniformly a-finite" 

ones). 

1.2 We start, then, with arbitrary Borel structures (X,.4), (Y, B) and a given 

transition kernel # assigning to each x E X a finite (non-negative, a-additive) 

measure #~ on (Y, B). As a first step, we replace # by another, substantially 

equivalent, transition kernel 7 incorporating additional structure (much as in 

[9]), by defining, for each x E X and L E A ® B  (the a-field of subsets o f X  x Ya- 

generated by the "rectangles" A x B, where A E ,4 and B E B), 

7z(L) = #~(L~) where L~ = {y e Y :  (x,y) E L} 

(it is easy to check that Lz E B). We have at once: 

PROPOSITION: 7 is a transition kernel from (X, ,,4) to (X x Y, A ® B) satisfying 

the condition 

(S) for a/l x E X and L E A ® B, % ( X  × Lz) = 7~(L). 

Conversely, a transition kernel 7 from (X, ,4) to (X × Y, ,4 ® B) that satisfies 

condition (S) always arises in this way from a unique transition kernel # from 

(X,.A) to (Y,B). (Define #~(K) = % ( X  × K)  for each x E X and K E B.) 

Because (S) implies that 7r(L) depends only on the section Lz, we shall say 

that a transition kernel satisfying (S) is "sectioned". It is then possible, and 

often convenient, to think of % as a measure on the "slice" {x} × Y rather than 

on Y (taking 7~(Ln({X} × Y)) to be %(L)),  so that 7 can be regarded as a 

sort of "direct sum" of the slice-measures 7z, x E X, and 3' becomes "completely 

orthogonal" in the sense of [9]. Note, however, that here the slice {x} x Y need 

not be ,4 ® B-measurable, because .4 need not contain singletons. 
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1.3 One can generalize further, allowing X x Y to be replaced by a "Borel" 

subset (say) W E .A ® B, so that 7 becomes a transition kernel from (X, .A) to 

(W, .4 x B[W) (where .A ® B[W means {W N L : L E .A ® B} or equivalently 

{K E .A ® B : K C W}). It is still required to be "sectioned"; that is, for all 

x E X and "Borel" L C W, 

3' (w n ( x  × = 

Under suitable conditions on W, X and Y, our main result can be extended to 

this more general situation; we return to this in §9 below. 

1.4 But from now on we shall specialize by requiring (Y,/3) to be an uncountable 

standard Borel structure - say the real line R or unit interval I = [0, 1], with B the 

family of (genuine) Borel sets. The main theorem of this paper (8.1) asserts that  

every sectioned transition kernel from (X, A) to (X x I, A®B) is isomorphic, in a 

measure-preserving and first-coordinate-preserving way, to a "model" sectioned 

transition kernel p from (X, A) to (M, ,4 ® BIM), of the type described in 1.3 

above, but with M (C X x R) having a simple and specific structure. (We refer 

to 8.1 for a detailed description of M; a rough description is in 1.5 below.) 

1.5 The fact that we are allowing arbitrary finite (positive, a-additive) mea- 

sures, rather than only probability measures, is not in itself significant, for we can 

always reduce to the "probability" case by dividing each 3"~ by 3"x(X x Y) when 

3'~(X x Y) ¢ 0, thus arranging that each slice has total measure either 0 or 1. 

But the extra generality here is convenient in §7, where the "continuous part" 3'c 

of % and 3' itself, will not usually have the same total slice-measures. However, 

for the preliminary considerations in §§2-7, we shall make the simplifying and 

easily-removed assumption that each 7x has total measure 1. 

On the other hand, the fact that we are allowing both 3'~-atoms and an arbi- 

trary a-field .A, does cause considerable complications, especially in connection 

with measurability. (If (X, .A) is a standard space, allowing "/x-atoms does not 

present much difficulty.) Accordingly §§2, 3 are concerned (respectively) with 

elementary properties of .A-measurable and .A ® B-measurable functions. In deal- 

ing with the latter, we use the technique of [6] (based on an idea of Ursell [11]) 

exploiting functions f(x, y) that are measurable in x and monotone in y. We then 

study the one- and two-variable distribution functions of the measures (§4). One 

curious consequence here (which will be useful in §6) is the existence of a "re- 

verse" transition kernel 3'r, obtained from the pseudoinverse of the distribution 
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function for 7. The atoms of the measures % are studied in §5; the main result 

here (5.4) is that these form a countable union of graphs of measurable functions. 

The M-measurability of the union of the "intervals of discontinuity", and of the 

union of the "intervals of constancy", of the distribution function then follows in 

§6. The continuous part 7 c of 3' (obtained by subtracting off the atomic part)  is 

again a transition kernel (§7), which enables us to define a "proper" (i.e., first- 

coordinate-preserving) isomorphism of "most" of the non-atomic part onto an 

ordinate set O. This leads to the sought-for "moder'  representation (§8), which 

gives a proper Borel isometry of X x I onto a model set M C X x R consisting 

of 3 parts: the ordinate set O, a sequence of "linear" sets corresponding to the 

atoms, and a null "singular set" (analogous to the "garbage set" in [2] and [7]). 

In the first instance, the displacing of the atoms produces a sequence of lacunae 

in the ordinate set, but these are later filled by a special device (8.5), for which I 

am indebted to A.H. Stone. Finally, in §9 we consider some extensions in which 

the transition kernel is further generalized - the image space X x I replaced by a 

"Bore1" subset of X x R (9.1 - 9.3) or the measures 7~ allowed to be infinite (but 

uniformly or-finite in a suitable sense) in 9.4 - 9.6. We conclude by remarking 

that the result in 9.6 (which concerns the case in which (X,.A) is a standard 

Borel structure) contains the planar decomposition theorem of Rokhlin [10] and 

the author [5]; cf. also [7,9]. 

2. M-measurable functions 

2.1 As in §1, let (X,.A) be a Borel structure. As usual, a function f : X --~ R 

is said to be "A-measurable", or "measurable" for short, if the sets f - l ( - o o ,  t)  

(or equivalently, f - l ( - o o , t ] )  (t E R), and hence f - l ( B )  for Borel B C R, are 

all in .A. As usual, the measurable functions form a real linear space: if f ,  g 

are measurable then so are fg  and (if g(x) is never 0) f /g;  and the limit of a 

pointwise convergent sequence of measurable functions is measurable. Somewhat 

less trivially, we have: 

2.2 PROPOSITION: Let f : D --, [0, o0) = R + be a non-negative rea/-va/ued 

function defined on a subset D of X. Then the following are equivalent: 

(1) f is A-measurable, 

(2) the "upper ordinate set" {(x,t)  : x E D and 0 < t < f ( x ) )  o f f  is 

A ® B-measurable, 
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(3) the "lower ordinate set" f ix ,  t) : x e D and 0 < t < o r s  is 

measurable, 
(4) D E .4, the graph r ( f )  (= {(z , f (z) )  : z E D}) is A ®  B-measurable, and 

the projection map p of r ( f )  onto D (where p(x, f (x))  = x) is a Bore1 

isomorphism. 

Remark: In (1), the meaning is that f - l ( B )  E A for all B E B, the family 

of Borel sets of R. In (4) it is understood that the Borel structure on F(f)  is 

.4 ® ~nd the Borel structure on O is ,410 (that is, {H O O : H E `4}). 

Proof: (1) =~ (2): Assume (1), and define (for n = 1 ,2 , . . .  and k = 0, 1 , . . . )  

O , , k = { ( x , t ) : x E D ,  ( k - 1 ) l n  < f(x)  <_ k/n,  O < t < k/n},  

Q.=UQ.,, andQ=NQ.. 
k n 

Clearly Q E ,4 ® B; and it is easy to verify that Q is the upper ordinate set of f .  

(2) :¢. (1): Assuming (2), let to >_ 0 be given. The intersection of the upper 

ordinate set with {(x,t) : x E D,t  = to}, namely {(x,t) : x E D,t  = to and 

f(x)  >_ to}, is in .4 ® B; hence the set {x E D : f ( z )  >_ to} is in A, as required. 

The proof that (1) and (3) are equivalent is similar. 

To see that (1), (2) and (3) imply (4), we get from (1) that D(=  f -1  [0, oo)) E ,4 

and from (2) and (3) that the graph F(f)  (=(upper ordinate set) \ (lower ordinate 

set)) E ,4 ® B. The map p is a bijection of F(f)  onto D, its inverse being i × f 

(where i is the identity map on D); we must show that both maps are measurable 

here. I f C  C D and C E ,4 ,  then (i x f ) ( C )  = F(f)  n ( V x R  +) E , 4 ® 1 3  so 

p is measurable. All that remains is to show that if L C F(f)  and L E .4. ® B 

then p(L) E ,4. Consider the family .M of all J E ,4 ® B with the property 

p(J O F(f))  E ,4. It is not hard to see that .M is a monotone class containing the 

(finitely additive) field generated by the "rectangles" H x K (H E .A, K E B), so 

that .M coincides with ,4 ® B. In particular, if L C F(f)  and L E A ® B = .M, 

then p( L ) E ,4. 

Finally, (4) implies (1): Assuming (4), let to _> 0 be given. Then 

(z E D:  f(x)  > to} = p(P(:)  N (X × [to, oo)) e A. 

2.3 We conclude this section with a result that will be needed in §8. Let £ be 

the set of all A-measurable functions f : X ~ R +, where (as before) R + denotes 
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[0, oo) with its usual Borel structure. The topology C of "close approximation" 

on £ (cf. [1]) is defined as follows. A neighborhood base at f E £ consists of the 

sets 

C(f,e)  = {g E £ : If(x) - g(x)l < e(x) for all x • X} 

where e is an everywhere positive .A-measurable function. We write £ (~)  for the 

subspace 

{f  • £ :  0 < f (x)  < ~(x) for all x • X} 

in the induced topology, where ¢ is an everywhere positive .A-measurable function 

on X .  

PROPOSITION: The space £, in the topology of close approximation, is a Ba/re 

space (that is, the intersection of a countable family of dense open sets is dense). 

The straightforward proof is exactly the same as for the special case X = R, 

.4 = Lebesgue measurable sets, given in [1]. 

COROLLARY: • (¢)  iS also a Baire space. 

For £ (¢ )  is the closure of the open subspace {f  • / :  : 0 _< f (x)  < ¢(x)} of the 

Baire space £. 

3. ,4 ® B-measurab le  funct ions  

3.1 As in [6], our technique for controlling measurability of real-valued functions 

on X x I (or X x R) is one due originally to Ursell [11]; we require .A-measurability 

with respect to the first variable mad monotoneity with respect to the second. 

We first recall some notations and results from [6, §2] (in which the present ,4 

was denoted by B(X)). 

Given an increasing (i.e., non-decreasing) f : I ---* I,  we make the unorthodox 

conventions f - (0)  = 0, f+(1) = 1, but otherwise 

f_(t) = f ( t - ) )  = 6~l+(t - 6) and f+(t) = f(t+) = ~m+ f( t  + ~), 

as usual. Thus f_ and f+ are also increasing functions from I to I; f_  is 

continuous on the left, and f+ on the right. Two increasing functions f and f '  

from I to I are "equivalent" if {t E I :  f(t) ~ f ' ( t)} is (at most) countable, or 

(what comes to the same thing) f and f '  agree on a dense subset of I (and hence 

at their points of continuity). The equivalence class of f consists precisely of all 
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f '  : I ---} I such that f_(t)  <_ f ( t )  ~_ f+(t) for all t E L And for all f~ in this 

equivalence class, f~  = f_  and f~. = f+. 

A map g :  I ---} I is a "pseudoinverse" of f provided f+(g(s)) >_ s > f_(g(s)) 
for all s E I, or equivalently if (for all s , t  E I)  t > g(s) =~ f ( t )  >_ s and 
t < g(s) ~ f( t)  < s. Then g is also pseudoinverse to every (increasing) function 

equivalent to f .  Moreover, g must also be increasing, and f is a pseudoinverse 

of g. The pseudoinverses g of f form a single equivalence class; we denote its 

largest member (the common value of g+) by f'-- (the "upper pseudoinverse" of 

f )  and its smallest member by f.-- (the "lower pseudoinverse" of f) .  

We define the "jump set" J( f )  to be the set {t E I : f_ ( t )  < f+(t)}. The 

"set of values of constancy of f "  is K( f )  = {p E I : f -1  (p) has more than one 

point}. Both J( f )  and K( f )  are countable (at most), and depend only on the 

equivalence class of f .  For each p E K(f ) ,  f - l (p )  is a nondegenerate interval 

("interval of constancy") from f.-.(p) to f ' - (p) ;  the endpoints themselves may 

or may not be included. The "constancy set" C(f)  was defined in [6, p.6] to be 

f - l ( K ( f ) )  = U { f - l ( p )  : p E g ( f ) } ;  but it will be convenient here to change 

this definition, redefining 

C(f)  = U {  (f.._(p), f ' -  (p)] : p E g ( f ) } .  

This differs from the previous definition only at endpoints in J ( f ) ;  so C(f)U J ( f )  
has the same meaning as in [6], and hence so also does the "good set" G(f)  = 
I \ ( J ( f )  U C(f)). Incidentally, the redefined C(f)  now depends only on the 

equivalence class of f ,  unlike the previously defined one. 

If g is any pseudoinverse of f ,  we have K(g) = J( f )  (and hence J(g) = K(f ) ) ;  

aa~d the restriction f iG( f )  is a homeomorphism of G(f) onto G(g), the (genuine) 

inverse map being giG(g). 
We note, for later use, two identities not in [6]. (As always in the present 

section, f is an increasing function from I to I, and t E I.) 

f[0,t] =([O,f(t+)]\U{[f(d-), f(d+]: d E J(f ) ,0  < d < t}) 

(1) U U { K ( f )  N { f (d- ) , f (d+)}  : d E J(f),O <_ d < t) 

U {f(d): d E J(f),O < d < t}, 

f[0, t) =([0, f ( t - ) ) \  U { [ f ( d - ) ,  f(d+)] : d E J(f), 0 < d < t}) 
(2) 

U U{{f(d)} u (K(f)  f'l { f (d - ) , f (d+)} ) :  d E J( f ) ,0  < d < t}. 
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The verifications, though tedious, are straightforward and are omitted. As im- 

mediate consequences, we have 

f[0, t] =([0, f ( t + ) ] \  U { [ f ( d - ) ,  f (d+)]  : d e J ( f ) ,  0 < d < t}) 
(3) 

U countable set, 

(4) 
f[0, g) =([0, f ( t - ) ) \  U { [ f ( d - ) ,  f (d+) l  

U countable se t .  

: d J(S) ,  0 < d < t})  

3.2 Now suppose F : X x I --* I is such that, for each x E X,  the map 

F~ : I ~ I, where F~(t) = r ( x , t ) ,  is increasing. As in [6, p.10] we write f t ( x )  

for F(x , t ) , r , ._ (x , t )  for (Fx).--(t) and F*"(x,t)  for (F~)*"(t); similarly f _ ( x , t )  

denotes (F~)_(t) = F~( t - ) ,  and so on. 

Two such functions F, F '  (from X x I to I, with Fx and F" increasing) 

are said to be "equivalent" provided F~ and F~ are equivalent for each x E X. 

It is easy to see that F and F '  are equivalent if and only if (for all x and t) 

F_(x , t )  <_ F ' (x , t )  < F+(x,t),  so that F_ and F+ are the least and greatest 

members of the equivalence class of F; and that F ~ and F are equivalent if and 

only if F ~ = F_ and F~. = F+. Further, F..- and F"-are equivalent; and if F 

and F ~ are equivalent we have F ~  = F... and (F')*-" = F*--. Note that the first 

variable (x) plays a purely passive role in these considerations; it will be relevant 

mainly for questions of measurability. 

We define i~': X x I ~ X x I by F(x,  t) = (x, F(x,  t)) and have [6, p.8] that F is 

measurable if F is (of course the Borel structures involved are (X x I, A ® B) and 

(I, B), where B is the family of (genuine) Borel subsets of I). The key property 

is given by the following theorem from [6, p.8]: 

THEOREM: Suppose F : X x I --* I satisl~es 

(i) for each t E I, the map F t : X --~ I is measurable, 

(ii) for each x E X ,  the map F~ : I --* I is increasing, 

(iii) either (a) Fx is continuous on the left, for all x E X ,  or (b) is continuous 

on the right, for all x E X. 

Then F is measurable, and consequently F is measurable. 

We remark that if F satisfies (i) and (ii) then so do F_ and F+, and they 

further satisfy (iii) and are therefore measurable. (In fact, F_ is continuous on 

the left and F+ is continuous on the right.) 
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One further result from [6, p. 10] will be useful: 

(1) If F satisfies conditions (i) and (ii) above, then F ' -  and F.-- satisfy (i), (ii) 

and (iii), and are therefore measurable. 

4. Di s tr ibut ion  funct ions  

4.1 Given a Borel probability measure v on I ,  its distribution function f (de- 

fined by: f ( t )  = u[0, t), t 6 I)  is an increasing function from I to I satisfying (for 

all t 6 I),  in the notation of §3, 

u[0, t) = f ( t )  = f ( t - )  = f_ ( t )  and ,[0, t] = f ( t+)  = f+(t). 

As is well known, the converse also holds. More precisely: 

P R O P O S I T I O N  : Given an increasing function f from I to I, there is a unique Borel 

probabllity measure ~ on X such that .[O,t) = f_( t )  and u[O,t] = f+(t)  (t 6 I). 

This is implicit, for example, in [3, p.53]. We sketch a direct proof, since it is 

short. Let A denote Lebesgue measure on I. Using the notation of §3, define (for 

each Borel H C I) 

u(H) = A(f(G NH))  + E ( f ( d + ) -  f ( d - ) :  d 6 J ( f )  N H},  

where G = I \ ( C ( f )  tA J ( f ) ) .  (Note that G N H is Borel, because G is and f i g  

is a homeomorphism.) Because f ( J ( f )  U C( f ) )  is countable, A(f([0,t) N G)) = 

A(f[0, t)); so, from 3.1(4) and the definition of v, u[0,t) = f ( t - ) .  Similarly 

u[0,t] = f ( t+)  from 3.1(3). Since a finite Borel measure is determined by its 

values on intervals, v is unique. 

We remark that each d 6 J ( f )  will be a u-atom, of weight f (d+)  - f ( d - ) ;  and 

u is zero on C ( f ) \ J ( f ) .  And if f '  is another increasing function from I to I ,  it 

defines the same measure u (as in the Proposition) if, and only if, f '  and f are 

equivalent (in the sense of §3). 

4.2 For an arbitrary finite Borel measure v on I, we denote the non-atomic or 

"continuous" part of u by u~; that is, if J denotes the (countable) set of atoms 

(singletons of positive measure) of u, we have for each H 6 B = B(I) ,  

(I) uC(H) = u(H)- ~{u{d}: d 6 Jn H}. 
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Thus v c is a Borel measure on I,  though in general not a probability measure 

(even if v is). 

Correspondingly, if f is an increasing function from I to I, the "continuous 

part" of f ,  fe,  is defined by 

(2) fc(t)  = f ( t )  - f s ( t )  (t • I), 

where f ' ,  the "saltus part",  is given by 

(3) f s ( t )  = ~ { f ( d + )  - f ( d - )  : d • J ( f ) ,  d < t} (t • I). 

Both fc and f~ are increasing functions from I to I, vanishing at 0; and f~ is 

continuous. We also have, for all t E I, 

(4) 

whence 

(5) 

In particular, 

(6) 

fo(t) = / + ( t )  - r4f+(d) - / _ ( d )  : d e J ( f ) ,  d <_ t} 

= f _ ( t )  - ~ { f + ( d )  - y _ ( d )  : d E J ( f ) ,  d < t} 

i f / '  is equivalent toy, then (f,)c = f% 

(f__)c = fc = (f÷)c. 

Of course, we also have (from continuity) 

(7) ( fc)_  = fc = (fc)+.  

Since fc is continous and increasing, fq0 , t ]  = [0, f~(t)], so that 

(8) ,~(f[0, t)) = fc(t)  = X(f~[0, t]) (t E I). 

4.3 The next proposition asserts that if f is the distribution function of 7 (as 

in 4.1) then fc  is the distribution function of 7 ~. More precisely: 
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PROPOSITION: I f  u is a tinite Borel measure on I,  and f is a function (necessarily 

increasing) on I such that (for all t E I )  u[0,t) = f_( t )  and v[0, t] = f+(t) ,  then 

vc[O,t) = f¢(t)  = vc[O,t] for a/1 t • I. 

Proof" First note that,  for each t E I, 

= - = y + ( t )  - y _ ( t ) .  

Hence, from 4.2(1), 

, f [ o , t )  = , , [ o , t )  - - f _ ( d ) :  d e J ( f ) , d  < t} 

= fc( t )  by 4.2(4). 

Similarly Pc[O, t] = fc(t). | 

4.4 Until further notice, 7 will denote a sectioned transition kernel from (X, .,4) 

to (X x I,.,4 ® B) (where B is the family ]3(1) of Borel sets of I), as in 1.4, 

and such that each 7x(I) = 1 (z E X). We define the "distribution funetion" 

F :  X x I ~ I of 7 by setting F ( z , t )  = 7~[0, t) (x E X , t  E I); thus F_ ( z , t )  = 

f ( x , t )  = 7~[0,t) and F+(x, t )  = 7~[0,t]; F+ and F_ are equivalent in the sense 

of §3, and are respectively the largest and smallest members of their equivalence 

class. To simplify printing, we sometimes write F for F_ and ~' for F+; thus 

F~(t) = F_ (x , t )  = 7x[0, t), and so on. (As usual, the parameter x is relevant 

only for considerations of measurability.) Though F_ is the same as F here, we 

often write F_ for symmetry of notation. 

From these definitions we have immediately: 

1 For each t E I ,  the maps F t and/~t (from (X, A) to (I,  B)) are measurable. 

2 For each z E X, the maps F x and ~'z (from I to I) are increasing. 

3 __F, is continuous on the left, and ~', is continuous on the right; also F , (0)  = 

0 and _~,(1) = 1 (in harmony with the conventions in 3.1). 

Theorem 3.2 now gives: 

COROLLARY: The four functions F__, F,  F_- and ['" are a11 .A-measurable. 

4.5 As in the one-variable case, the "distribution function" determines the tran- 

sition kernel. More precisely: 

PROPOSITION: Suppose F : X x I ---* I satist~es 

(i) for each t E I,  the map F t : X ~ I is A-measurable, 
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(ii) for each z E X ,  the map F~ : I ~ I is increasing. 

Let ~t~ be the Bore1 probability measure on I determined by Fz (x E X), as in 

Proposition 4.1, and define 7 ~ by 

= (L e A ® t3). 

Then ~,' is a sectioned transition kernel from ( X, .A)  to ( X x 1, .4 ® B), with e~ch 

~ ' ( I )  = 1; and the distribution function F'  ofT '  is equivalent to F.  

Proof: In view of the considerations of 1.2, it is enough to prove that tt is a 

~ ransi~ion kernel from (X,.4) to (I, B); and the only thing requiring proof here 

~ ~,hat, for each H E 13 the function x ~-* p~(H) is .A-measurable. Let 7"l denote 

t~:~ ~m~ly of all H E B for which this is true. It is easy to see that 7-/contains all 

o=:~ervals in I,  and thence that 7"l contains the (finitely additive) field that they 

generate; and that 7"l = B then follows via the monotone class theorem, st 

Remarks: (a) The difference between #~ and 7~ here is really only a matter of 

notation, since 7~ can be thought of as/~z transferred to the slice {x} × I. 

(b) Functions equivalent to F determine the same transition kernel. 

(c) If F satisfies conditions (i) and (ii) above, then so do F_ and F+; and 

moreover each F z is continuous on the left, and e a c h / ~  on the right (cf. 

4.4(3)). | 

4.6 Let F : X x I --* I satisfy conditions (i) and (ii) above (4.5). Then 

the upper and lower pseudoinverse functions, F ' -  and F.-., also satisfy these 

conditions (see the proof of Lemma 3.5 of [6, p.ll]),  and they are equivalent. 

Hence, by Proposition 4.5, they both determine the same transition kernel (from 

(X, ,4) to (X × I, ,4 ® B)), which is in a sense reversed from that determined by 

F. In particular, if F is (equivalent to) the distribution function of a transition 

kernel 7 (from (X,,4) to (X x I, A ® B)), F.-. and r ~ are equivalent to the 

distribution function of a kernel which we denote by 7 r, the "reverse" of 7. Since 

the pseudoinverses of F.._ and F"-  are equivalent to F,  the reverse of 7 r is 7. We 

shall make use of 7 ~ in §6 below. It would be interesting to know the probabilistic 

significance of 7 ~, if any. 
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5.1 Let 7 be a sectioned transition kernel (as in subsection 4.4) from (X, .4) to 

(X × I, .4 ® B), each 7~ being a probability measure. Let F be the distribution 

function of 3' (cf. 4.4), so that, for each x • X, F~ is the distribution function of 

7z- Recall that J(F,~) denotes the "jump set" of F~ (3.1), and depends only on 

the equivalence class of F~. We define J't, or J for short, by 

J = J - t = U { {  x } x J ( F ~ ) : x • X } C X x I .  

Since J(F~) is the set of all atoms of 7~, the "atomic set" J of 7 satisfies 

(1) J = { ( x , 0  : x • x , t  • I,-~z{t} > 0}. 

Our object in §5 is to show (Theorem 5.4 below) that J is a countable union 

of graphs of .4-measurable functions. First we require some elementary results 

about A-measurability. 

For each c > 0, define 

(2) J(c) = {(x,t) • X x I :  7~{t} ~< c}. 

From 4.4, Corollary, we have that F_ (= F)  and F+ are .4 @ B-measurable 

functions; hence so is their difference, the function (x, t) ~ 3'x {t}. In particular, 

the sets J and J(c) are in .,4 ® B. More generally, for each B • B, the set B* 

defined by 

(3) B* = {(z,t) • X x I :  7,{t} • B} 

will be in A ® B. 

5.2 Let L be an .4 ® B-measurable subset of J,  fixed for the present. Note that 

its projection rr(L) = {x E X : Lz ~ 0} also equals {x E X : 7~(L) > 0}, and 

therefore 

(~) . (L)  e A. 

Since 7x(I) is finite, we have that, for each e > O, the set {t E L~ : 7z{t} > c} 

is finite. Accordingly we define, for each x E X, the "weight" 

(2) ~L(~) = m a ~ ( ~ { t ) :  t e L~}, 
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with the convention that max 0 = 0. Note that 

(3) the function wL : X ~ I is A-measurable, 

because, for all t > 0, 

{x 6 X :  WL(X) > t} = {x 6 X :~t~(Ln S(t)) > O} ~ A. 

Let L A denote {(x,t) e L :  "y,{t} = WL(X)}. We claim 

(4) L A • A ® B ,  rr(L A)=a ' (L) ,  and WL^ =WL. 

For the function (x, t ) ,  , wL(x) is ,4 ® B-measurable, from (3); also, as noted 

in 5.1, so is (x , t )  ~ 7x{t}, so that the set {(x,t) • X x I :  WL(X)-- 7z{t} = 0} 

is in .,4 ®/3. And L A is the intersection of this set with L. That 7r(L A) C 7r(L) 

is trivial; the reverse inclusion is straightforward. That WL^ = WL is immediate 

from the definitions. 

5.3 Now let M be an .A ® B-measurable subset of J with the further property 

that, for each x • X, the section Mx is finite. Define the "height"of M at x by 

(1) hM(x) = ,,lax Mx, 

again with the convention max 1~ = 0 (so that, in particular, hM(X) = 0 if x 

7r(M)). Then 

(2) hM : X --~ I is .A-measurable, 

because, for each t > O, {x • X : hM(X) _ t} = ~r(M 0 (X x [t, 1])) • A in view 

of 5.2(1). 

In particular, taking M = L A, we obtain from (2) and 5.2(4) that 

(3) hL^ is .A-measurable and is zero outside r(L).  

Write hL^ [~r(L) as gL, for short, and let FL denote its graph {(x, t) : x • L, t = 

gL(x)}. As the graph of an .A-measurable function, FL • A ®/3 (Proposition 

2.2); and we have 

(4) FL c L A c L c J. 
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We observe 

(5) if (z , t )  ~ L \ r n ,  then 7~{t} _< WL^(X), with equality only if t < gL(x). 

For (since t E L~)7~{t} < WL(Z) = WL^(X) by 5.2(4). If there is equality, then 

(x , t )  E L ̂  and therefore t <_ hL^(Z) = gL(x). But t ¢ gL(z) (else (z , t )  e rL) ,  

SO t < gL(Z). 

5.4 Now write J1 = J, F1 = F j  = graph of gl where gl = gJ = h j^ la'(J), and 

define recursively, for n = 2 , 3 , . . . ,  Jn = J n - l \ F n - l , F n  = Fj~ = graph of gn 

w h e r e  

g, = gJn = h(Jn)^ ]~r(Jn). 

The results in 5.1, 5.2 and 5.3 show that all these sets and functions are ,4- 

measurable. We now prove: 

THEOREM: The graphs F1 ,F2 , . . . ,  are pairwise disjoint; their union is J; and 

their domains of de~nition decrease as n increases. 

The last assertion (useful later) is trivial, because Jx D J2 D . . . .  From 5.3(4), 

Fn C (Jn) A C Jn, which is disjoint from F1U..  "UFn-1, so the graphs F1 ,F2, . . . ,  

are pairwise disjoint. All that remains is to prove Un Fn = J.  

One inclusion here is trivial; for the other, fixing x E a'(J), we show that 

x J, c Un r . .  
Keeping x fixed throughout, define (for each v E J , )  the "rank" of v by 

r(v) =1 + card {s E J~:  7z{s} > 7~{v}) 

+ card {t E J~ : 7,{t} = 7 ,{v)  and t > v} 

= 1+ number of points preceding v in the "lexicographic" linear ordering of Jx 

specified by: 

s ~ t @ either 7 , ( s}  > 7 , ( t} ,  or 7~{s} = 7~{t} and s > t. 

If we list the members of J~ in this order, as (say) sl ~- s2 ~- . . . ,  each t E J~ 

gets listed (because 7~{t} > 0 and t has only finitely many predecessors); and the 

rank of sr is r. Now we show, by induction over r, that  (x, s t )  E Ft. For r = 1 this 

follows from the fact that ~1 will be the highest of the points of greatest weight of 

J~. And if it holds for all r < k, we note that the k -  1 predecessors sl ,  s 2 , . . . ,  sk-1 
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of sk are in (F1 O . . .  O Fk-1) , ,  so (x, sk) • J \ (F1 O . . .  O Fk-1) = Jk and sk will 

be the highest of the points of greatest weight of J~ - -  that is, sk = h(j,)^(x)-- 
showing (x,s~) • Fk. Thus (x, sr) • Fr for r = 1 ,2 , . . . ,  and {x} x J ,  C U,, F,,, 

as required. 

6. T h e  intervals  o f  d i scont inu i ty  and  o f  c o n s t a n c y  

6.1 With 7 and F as in 4.4 and §5, we say that an interval of the form 

(7.[0, t) ,  %[0,t]], where {t} is an atom of 7z - -  in other words, an interval 

of the form (Fz(t-), F. ( t+) ]  where (x, t) • J-~ - -  is an "interval of discontinuity" 

over x; and we denote the corresponding union (over x • X)  by D-r, or D for 

short. More precisely, 

D = D~ = U{{x}  x (7x[0,t),%[0,t]] : (x , t )  • J.~}. 

PROPOSITION: D • .,4 ® B. 

Proof: Since J7 = Un P,, (Theorem 5.4), we can write D = 0 ,  D,, where 

On = U{{x} x (%[o,t),Tx[o,t]] : (x,t) • F,};  and it will suffice to prove that 

D,, • .4 ® B for each n. For the rest of the argument, n is fixed; and to save 

notation we omit the suffix n. Thus we are concerned with (x, t) • F where 

P is the graph of the measurable function g (abbreviating gn) as in 5.4. By 

Proposition 2.2, the upper and lower ordinate sets of g, namely 

{(x, y) : x • ~'(F), 0 < y _< g(x)} and {(x, y ) :  x • ~r(F), 0 _< y < g(x)}, 

are in .4 ® B. Because 7 is a transition kernel it follows that the functions defined 

by x ,  , %[0,g(x)] and by x ,  , 7,[0, g(x)) for x • ~r(P) (and zero on X\~r(P)) 

are .A-measurable. Hence the upper (and lower) ordinate sets of these last two 

functions are in ,4 ® B; and on intersecting them with (X\~r(F)) x I we have that 

(in particular) the sets 

v ,  = : • • < s < 

and 

o 2  = { ( x , s )  : x e < < 

are in .4 ® B. But O1\O2 = Dr,, proving D ,  E .4 ® B as required. 
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6.2 REMARK: A similar argument will prove that the 3 other sets produced by 

replacing the interwals ( 7~ [0, t), 7, [0, t]] in D throughout by their closures, or by 

their interiors, or by [~,[0, t), "r,[0, t]) respectively, are also in A ® B. 

6.3 As in 3.1, the set of "values of constancy" of F ,  is by definition K(Fx) = 

{p E I : (F , ) - l (p )  has more than one point}. We define the set of values of 

constancy of F ,  denoted by K(F) ,  to be U{K(Fx) : x E X}. It is easy to see 

that K(F)  is not altered if F is replaced by an equivalent function (e.g., F+) ,  

and accordingly we sometimes write K-r instead of K(F) .  

Now consider any measurable pseudoinverse of F (3.2), say F ' -  for definite- 

ness. As in 4.6, F ' -  is (equivalent to) the distribution function of the "re- 

verse" transition kernel 7 r. From [6, p.7] we have that K ( F , )  = J((F'-')~) 

and J(F~) = K ( ( F - ) ~ )  - -  that is, the jumps of the one function are exactly the 

constancy-values of the other. Hence we have 

(1) J-r = K ( F ' - )  = K 7, and K-r = J r ' .  

Remark: Hence, by 5.4 applied to 7 r, K 7 too is a countable union of graphs of 

.A-measurable functions. 1 

6.4 We have (re)defined the "constancy set" C(F,)  to be 

U{((F,). .-(p),  (F,)"-(p)l;p e g ( F , ) }  

(cf. 3.1), and we now define the "constancy set" C(F), or C-r, or C for short, to 

be 

F .-- U{{x} x C ( F , ) : x  e X} = U{{x  } x ( (F , ) . . _ (p ) , ( , )  (P)I: (x,p) e K.t}. 

From [6, 2.(13)] and 6.3 above, we can write this as 

U{{x} x ((Tr)x[O,p),(Tr)x[O,pl] : (x,p) e J'r'}; 

thus C-r = D-r., and 6.1 gives: 

PROPOSITION: C-r E j t  ®/3. 

Of course, it also follows that D-r = C-r.. 

From the Remark (6.2) we see that if the intervals of constancy were all re- 

defined so as to include (for all of them) both endpoints, or neither, or the left 

endpoint but not the right, the 3 resulting redefined constancy sets would also be 

in .A x B. However, the normalization adopted here (including the right endpoint 

but not the left) is convenient later on (in §7). 
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7. T h e  c o n t i n u o u s  p a r t  

Isr. J. Math. 

7.1 With r and F as in §§5,6, we define the"continuous part" r e of r by 

¢ ( , ,  L) = r,~(L) = r , ( L \ J , )  (x • X, r~ • ,4 ® ~) 

and the "continuous part" F c of F by 

H = (f~)  c (x • X),  

the continuous part of the distribution function F~ of %. Note that,  from 4.2(5), 

equivalent F ' s  have the same continuous part. 

We write X ~ = {x E X : r~(X x I)  > 0); thus X ~ e `4 and for each x E X \ X  e 

the probability measure % is purely atomic. We use (X e, A) as an abbreviation 

for ( x  c, `41x% and similarly for (X o × I, ,4 ® n). 

PROPOSITION: r e is a sectioned transition kernel from ( X ~, ,4) to ( X ~ x I, ,4 ® B ) ; 

and its distribution function is F*[X ~ x I. 

Remarks: (a) In general r~(X e x I)  will be less than 1: but the previous theory 

continues to apply, essentially unchanged; to justify it (as in 1.5) we need only 

imagine dividing r~ by r c ( X  e x I) ,  for each x E X ¢. 

(b) Having shown that r ~ is sectioned, we shall often use the convenient 

"abuse of notation" r~(H)  for r~(X ~ x H),  H • B. 

Proof  of the Proposition: Since J7 • ,4 ® B, each r c is a countably additive 

measure on B; and since the function 

x,  , r ; (L )  = r , ( L \ J ~ )  

is A-measurable (for fixed L E A ® B), % is a transition kernel. Since 7~(L) = 

% ( X  c x (L\J~)x),  which depends only on z, 7 c is sectioned. From Proposition 

4.3 and the facts that %[0, t )  = (Fx)-( t)  and %[0,t] = (F~)+(t), we see that r e 

is (equivalent to) the distribution function of 7 ~. | 

7.2 COROLLARIES: 

(1) f~[0, t] = [O, FC(x,t)] and hence 

A(F~[0,t]) = FC(x,t) = 7~[0,t] (x E XC, t E I). 

(From 4.2(8).) 
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(2) F c, as a map from (X ~ × I,  .4 ® B) to (I ,  B), is measurable. ( ~ o m  the 

remark following Theorem 3.2, since here Fe_. = F.~ = F e because 7~ has 

no atoms.) 

7.3 Recalling (3.1) that C(F~) denotes the (revised) "constancy set" of Fff, we 

now show: 

PROPOSITION: For each x • X e, (F~)..- is a bijection of [0, F~(1)] onto 

I \C(F~) ,  with inverse map F~I(I\C(F~)). 

Since x will be fixed throughout the proof, we simplify the notation by writing 

f for F~, v for the corresponding measure 7~, and C for C(FC~). Thus f is a 

continuous increasing function from I onto [0, f(1)]. 

Enumerate g ( f )  as {Pl,P2, . . .} ,  as in 3.1, and let f - l ( p , )  = [a,,b,] (n = 

1,2 , . . . ) .  Thus C = U { ( a , , b , ] : n  = 1 ,2 , . . . )  where we note for future use that 

v(a, ,  b,] = f ( b , )  - f ( a , )  = 0 for each n, so that v(C) = 0. On I \ C ,  f is strictly 

increasing, hence 1-1. Also f ( I \ C )  = f ( I ) ,  as can be seen as follows. Given 

p • f ( I ) ,  there is some s • I such that f ( s )  = p. If p • g ( f )  then x • I \ C  as 

required; but if p • K ( f ) ,  say p = p , ,  then a~ • I \ C  and f ( a , )  = p. Thus in 

either case p • f ( I \ C ) .  The same reasoning shows that there is only one s • I \ C  

with f ( s )  = p, namely s = f - l ( p )  i fp  ¢ g ( f )  and s = a .  i fp  = p , ;  and in either 

case we have s = f._.(p). 

7.4 Now let x vary (in XC). Write @ for the function x ,  , F~(1) = 7~[0, 1], 

and O for its upper ordinate set {(x,t)  : z e Xc ,0  < t < @(x) = F~(1)}. Since 

7 c is a transition kernel, (I) is A-measurable and therefore (by 2.2) O E .A ® B. 

Define E = (X c x I ) \ C ( F  c) (so that E,  = I\C(FC~),x • XC). Both E and O 

are given the Borel structure they inherit from A @ B. 

As in 3.2 (and [6, p.8]) we have from 7.2(2) that (FC) ~ is measurable, where 

(F~)'(x,t) = (x , r~(x , t ) ) .  Now we show: 

PROPOSITION: (FC)'l  E is a Borel isomorphism of E onto O, with inverse 

((FC).__)~ and further, for MI x • X ~ and t e I , ( ( rc ) - I  E)({x} × ([0, t] n Ex)) = 

{x}  × × [0,t]). 

Proof: For each x E X c, (FC) ~] E~ takes {x} × E~, in a 1-1 way, onto {x} × 

[0, ~(x)], by Proposition 7.3, the inverse map being ( (F: )~ . ) '=  ((FL)~)x. This 

shows that (F¢) ~] E is a "proper" (i.e., first-coordinate-preserving) bijection of 
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E onto O, with inverse ((FC).._) ". Both maps are fl[ ® B-measurable. All that 

remains to be proved is that (for all x E X ~ and t E I), 

F:([0,t] n Ez) = f:[o,t]; 

that is, in the abbreviated notation used in 7.3, 

S([o,t]\c) = S[o,t] (= [o,s(t)]). 

And this follows by reasoning similar to that in 7.3. l 

7.5 COROLLARY: (FC)~I E is a proper Borel isometry, taking the measure 7~ 

on Ez to Lebesgue measure A on Oz. 

That is, for each H E B and x E X c, 

7~((X c x H)\C(F2) )  = A(F~(Hz\C(F2))) .  

This is true when H has the form [0,t],t 6 I,  by 7.2(1); and the general case 

follows routinely. 

8.  T h e  m o d e l  r e p r e s e n t a t i o n  

8.1 In this section we return to the more general situation (1.4) in which the 

measures 3'~, though still required to be finite, do not necessarily have total 

measure 1. Our object is to define a "proper" (first-coordinate-preserving) Borel 

isometry taking the sectioned transition kernel 7 (from (X, ,4) to (X × I, A ® B)) 

to the model representation promised in 1.4. This will be done in two main 

steps, the first of which produces an approximation to the desired model, which 

the second step adjusts to give the final model. We emphasize that, throughout 

the construction, all the isomorphisms used are to preserve first coordinates - -  

that is, to be "proper". 

Write X ° = {x E Z : 7z(I) = 0}, X a = {x E X : ~z(I) > 0 = 7~(I)}, and 

(as before) X c = {x E X :  7~(I) > 0}. (Here again we are taking advantage of 

the fact that 7 is sectioned, writing 7~(B) for 7~(X × B), B E B.) Of course X a 

consists of the x's for which 7z is purely atomic and nonzero; and X ° , X a , X  c 

partition X into three .A-measurable sets. 

The model M will be a subset of X x R consisting of three pairwise disjoint 

A ® B(R)-measurable sets, as follows. 
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A "singular set" S C (X ° UX ~) x K °, where K ° is a Cantor set contained 

in the interval (-1,0) and of Lebesgue measure 0. 

(2) The set U,,(A,, x { -n})  = T, say, where (cf. 5.4) the sets A,, (n = 1, 2 , . . . )  

are the domains of definition of the A-measurable functions g,, whose graphs 

F(g,,) = F,, make up the "atomic set" J of 'r  - -  or rather of the restriction of 

7 to X \ X  ° = X a U X L  (In §5 the 7~'s were assumed to be probability mea- 

sures, but the usual "renormalization" process, replacing 7z by (1/7~ (I))7~, 

shows that the finiteness of the 7~'s suffices.) We recall that the graphs Fn 

are pairwise disjoint, and that each A,, E A and Al D A2 D -...  

(3) The set O, where (as in 7.4) O is the upper ordinate set of the function 

(where 0(x) = 7~c(I), x E XC). 

The model is M = S U T O O, equipped with the "Borel" field ,4 ® B(I~)IM. 

The corresponding (sectioned) measure pz (x E X) on M is defined to consist of 

Lebesgue measure A on the "slice" O~ U S~ of O U S, together with a purely atomic 

measure on T, each atom ( x , - n )  (where x E A,)  having weight 7~{gn(x)}. Of 

course, p~ will be zero on Sx. 

THEOREM: There is a proper Borel isomorphism ~ of X x I onto M, taking each 

7x to the measure p, (x E X).  

As remarked above, we first prove this for an "approximate model", in which O 

is replaced by the set (say) U = O\J" ,  where J "  is the image of J '  = J A E  under 

the isomorphism (cf. 7.4) (FC)-[ E of E onto O. (Since each J~ is countable, the 

measures p, are not affected by this replacement.) Later (8.5) we shall restore 

O by means of a further proper isomorphism of U. 

We define ~ on J as follows: We have J = U ,  Fn where (Proposition 2.2) 

F ,  is "Borel" isomorphic to An by projection. Hence we define ~ on F,~ by 

¢(x, gn(x)) = ( x , - n )  (for all x E A, ,  n = 1, 2 , . . . ) .  

Next consider ( on (((X ° O X a) x I) O C(FC))\J. Fix a Borel isomorphism t~ 

of I onto K °, and define ((x, t) = (z, 8(t)) (x E X, t E I); the resulting image set 

(C X x K °) is defined to be S. Here, of course, ( is measure-preserving, because 

both 7z and p, are 0. 

Finally, on the remaining part E \ J  (where, as in 7.4, E = (X c x I)\C(FC)) 

we take ~ to be the restriction of the (proper) Borel isomorphism (F~) - (as in 

7.5), mapping E \ J  onto O\J"  = U. Thus here p~IU, provides the continuous 

(dispersed) part, and p,[T~ the atomic part, of 7~. 
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8.2 To replace U by O we have to "fill in" the gaps in O left by the removal of 

J " ;  and the first step is to obtain an improved representation of the set j t  = JNE.  

The reasoning in §5 applies virtually unchanged when J is replaced by j i ,  and 

leads to the following result (cf. Theorem 5.4): j i  is the union of a sequence 

(possibly finite) of pairwise disjoint graphs F~, = r(g ')  of .A-measurable functions 

gt (n = 1,2, . . . ) ;  and the domain of definition of g~, is an .A-measurable set A~, 

such that X c D A~ D A~ D . . . .  

Now the proper isomorphism (FC)~[ S (of E onto O) takes each F~. = F(g~) 
= r _ I I ' ~  to the graph F:: (y , )  of the .A-measurable function g~, where gg(x) = (FC= o 

g~)(x). Since this isomorphism is proper, the domain of gg is st i l l  A~; and 

the graphs F~ are pairwise disjoint since the F~ are. The graphs F~ are all 

contained in O, and are precisely the graphs whose removal from O has left the 

set U (= (FC)~(E\J')). The remainder of the proof, for which I am indebted to 

A.H. Stone, is devoted to reinserting these graphs, by means of a suitable proper 

Borel isometry. 

8.3 We recall (7.4) that O is the upper ordinate set of the .A-measurable ev- 
_..+ c 0 erywhere positive function (I) : X c R, where ¢(x) = F~(1) = 7=[ , 1]. As in 

2.3, consider the space l:((I)) of all .A-measurable functions f : X c ~ R such that 

0 <_ f ( x )  <_ ¢(x)  for all x E X c. The construction depends on the following 

lemma: 

LEMMA: Given a countable family of A-measurable functions Cn : Bn ~ R, 

where each B ,  C X ~, such that 0 <_ ¢,(x) _< ¢(x) for all x E B,,, there exists an 

.A-measurable ¢ E f-.(@) whose graph F(¢) is disjoint from al} the graphs F(¢,,). 

(Remark: From 2.2, we have that each B,, E ,4.) 

Proof: As noted in 2.3, £:((I)) with the topology of close approximation is a Baire 

space. Put  

H,, = {f  E L:(~) : F(f)  n F(¢.) = ¢}, n = 1 ,2 , . . . .  

It is not hard to see that H .  is both open and dense in/:((I)). Hence An Hn is 

nonempty, and we just pick ¢ E A ,  Hn. I 

8.4 COROLLARY: Under the hypotheses of the Lemma, there is an intinite se- 

quence of.A-measurable functions ¢1, ~'2,..., on X c such that (for a/l n E N and 
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x e X c) 0 <_ ¢ , (x )  <_ ~(x) and the graphs r(Cn) are disjoint from each other 

and from MI the graphs r(¢,). 

We get ¢,~ by applying the Lemma inductively to the functions ¢i,¢2,..-, 

¢,-1,  ¢1, ¢3,.... 

8.5 We apply Corollary 8.4 to the graphs r~ = r (g- )  of 8.2, obtaining .4- 

measurable functions f,~ : X c ~ R such that 0 _< f,,(x) _< ¢(x) for all x e 

X ~ and all the graphs F(fn), F(g~)(m,  n = 1, 2 , . . . )  are palrwise disjoint. By 

construction, all of them are subsets of 19. 

Put B0 = XC\AI1, B1 = A I ~ al v i i 1\~2, ~2 = A2\Aa , . . . ,  and Boo = ~,~ A~; these sets 

partition X c into .4-measurable sets. For each k E N we have that gl", g2", • • • , g~ 

are defined on Bk, while the domains of definition of g~ for n > k are disjoint 

from Bk. Now map O\  U,~ F~ (= U) onto O by the proper "Borel" isomorphism 

~1 defined as follows. The map ~/ is to be the identity except on the union of 

the graphs r(f , , ) ,  n = 1, 2, . . . .  For each finite k, and each x E Bt ,  r/ maps 
, ,  

f l ( x )  tog  I (x) , f2(x)  to . . ,  fk(x) t og~ (x ) , h+ l ( x )  to f l ( x ) , . . . ,  h + , ( x )  to 

f , ( z ) , . . . .  And, for x e Boo, 7/maps f2,,-l(X) to g"(x) and f2,,(x) to f~(x)  (n = 

1,2, . . . ) .  

The combined isomorphism r} o ~ sends X x I to the model M, and ~ to the 

transition kernel p, as required. 

9. Some ex tens ions  

9.1 Suppose -), is, more generally, a sectioned transition kernel from (X, .4) to 

(W,.4®I3[W),  where W is a "Borel" subset o f X  x R, and B is the family ~(R) 

of Borel subsets of N; cf. 1.3. We wish to extend Theorem 8.1 to cover this more 

general situation. 

The first step is to extend 3' to a sectioned transition kernel "~ from (X, .4) to 

(X x R, .4@/3), simply by defining "} to be 0 everywhere outside W (and to agree 

with 3' on W). By Theorem 8.1, "} is isomorphic, by a proper isometry ~, to a 

model sectioned transition kernel, t~ say, from (X, .4)  to (_~/, A ® BI-g/) where 

= S U 2~ U d as in 8.1. We consider 3 cases: 

CASE I: Suppose W is "sectionally closed" in the sense that all its sections 

W, (x C X) are closed subsets of R. In this case, since 7x is zero on each comple- 

mentary interval of ({x} × R) \W, ,  the construction of the model automatically 



304 D. MAHARAM Isr. J. Math. 

ensures that ~ maps each such interval into the singular set S. Thus the restric- 

tion ~ of ~ to W provides a proper isometric isomorphism of the original kernel 7 

onto a model M = S U T U O in which T = T and O = O but S C S; that is, M 

differs from M only in having a smaller singular set. Thus Theorem 8.1 applies 

unchanged in this case. 

9.2 CASE II: Even if W is not "sectionally closed", the preceding method can 

be applied. The restriction ~ of ~ to W provides a proper isometric isomorphism 

of 7 onto a model M = S U T U O I, where S C S , T  = 7" and O I is of the form 

O\Z, where O is an ordinate set as in Theorem 8.1 and where a "Borel" set Z 

has been removed from it. By a further proper Borel isometry we can compress 

O\Z into an "almost ordinate set" in the sense of [7]; that is, we may assume 

each Zx has zero Lebesgue measure. This still produces a "model representation" 

for 7, but  of a less tidy nature than in Theorem 8.1. 

9.3 CASE III: But in Case II, if (X,,4) is itself a standard Borel structure, 

one can use Mauldin's Borel parametrization theore m [8] (as in [2]) to eliminate 

the gaps in (..9 caused by the removal of Z, and we end with Theorem 8.1 applying 

unchanged. 

9.4 INFINITE MEASURES. We return to our usual situation, except that it is 

now more natural to replace I by the equivalent standard space R + = [0, oo). 

Thus 7 is a sectioned transition kernel from (Z,  ,4) to (X × R +, ,4®B(R+)).  Now 

the measures 7~ so far have always been assumed to be finite; can this restriction 

be removed? It seems natural to require them to be a-finite, but we shall need 

something stronger. We say that 7 is "uniformly a-finite" provided X x R + can 

be expressed as U { H , :  n = 1, 2 , . . .}  where H ,  E ,4 ® B(R +) and 7x(Hn) < oo 

for all x E X and n E N. Then Theorem 8.1 applies to each Ha; however, for 

the present purpose, it is convenient to modify the "model representation" of 

Theorem 8.1 slightly, as follows. The "ordinate set" O in that model was defined 

to be the "upper ordinate set" {(x,t)  : x E X, 0 < t < ~(x)} of the function ¢. 

It will here be more convenient to replace O by the "lower ordinate set" {(x,t)  : 

x E Xc, O _< t < 5(x)}.  This can be done by a proper Borel isometry, similar to 

that in 8.5 but  simpler (map each (x, ¢.(x)/k) to (x, ¢(x)/(k + 1)), k = 1, 2 , . . . ) .  

In what follows, O will denote this lower ordinate set. 

Again we consider 3 cases. 



Vol. 78, 1992 TRANSITION KERNELS 305 

CASE I: Suppose 7~(X x [0, t]) < o0 for all t E R + and x E X. Then we may 

(and do) take Hn = X x [0, n] (n • N). We shall show: 

THEOREM: In Case I, there is a proper isometric Bore1 isomorphism ~ taking the 

sectioned, uniformly a-finite transition kernel 7 to a "model" sectioned transition 

kernel p from (X, ,4) to (U,  A ® B(R)IM ), where U is the disjoint union of three 

.A ® B(R)-measurable sets, S U T t3 O, such that 

(1) the singular set S is a subset of X × K °, where K ° is a nu/ /Cantor  subset 

of(-1,0), 

(2) the atomic set T is the union of a sequence of~4-measurab/e sets contained 

respectively in distinct sets of the form X x { -n}  for certain va/ues of 

n •  N, 

(3) the ordinate set 0 is the lower ordinate set of an .A-measurable non-negative 

extended-reed-valued function ¢. 

The measure p, (thought of as located on the x-section) is zero on Xx, purely 

atomic on T,,  and coincides with Lebesgue measure A on 0~. 

Sketch ofproo~ Apply Theorem 8.1 to each HA, obtaining a proper isometric 

isomorphism ~n onto a "model" Mn = S,, U T,~ O On, but in which we now make 

the following modifications. We first fix a sequence of pairwise disjoint Cantor 
0 sets K , , n  = 1,2, . . . ,  in the null Cantor set K ° (el. 8.1), and arrange that  ~,~ 

places Sn\Sn-1 in X x K °. The subset Tn\Tn-1 of the atomic set is placed on the 

"lines" X x {_(p,,)k}, k = 1 ,2 , . . . ,  where pn is the nth  prime. And, as arranged 

above, On is the lower ordinate set of the corresponding function ~n (where 

¢n(x) = %~[0, n]). The construction proving Theorem 8.1 automatically ensures 

that ~n extends ~n-1 so far as On-1 is concerned, and we easily arrange that  ~n 

extends ~,,-1 elsewhere. Thus the maps ~n combine to give an isomorphism ~ as 

required. II 

9.5 CASE II. Here we suppose merely that 7 is uniformly a-finite as defined 

in 9.4, so that the sets H,, are merely "Borel" sets with union X x R +. We 

may of course suppose them pairwise disjoint. As pointed out in 9.2, Theorem 

8.1 applies to each Hn except that On will here be merely an "almost ordinate 

set". We deduce: Theorem 9.4 still applies, except that the ordinate set 0 is to 

be replaced by an "almost ordinate set". 

Sketch of proof: Again Theorem 8.1 produces a proper isometric isomorphism ~n 

taking the restriction of 7 (from (X,A) to (Hn,A ® B[Hn)) to pn, from (X,.A) 
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to (M, ,  A ® BIM,),  where M,~ = S ,  U Tn U O, .  Much as in Case I (9.4) we 

arrange that Sn C X x K ,  ° and Tn C X x { - (pn)k ,k  = 1 ,2 , . . .} .  And we raise 

each "almost ordinate set" O ,  vertically so that it fits just above O , -1 .  More 

precisely, O ,  was by definition (almost) the lower ordinate set of the positive 

finite function ~ , ;  now ~ ,  can here be regarded as defined on all X,  with value 

0 outside its original domain of definition, and we arrange that O ,  is translated 

vertically by ~1 + ¢2 + "'" + ~n-1.  Then O1 U O2 U . . .  U O,, will be (almost) 

the lower ordinate set of ffl + ~ + " "  + ~ , ;  and finally O = U { o ,  : n E N} is 

(except for an omitted subset of section-measure 0 for all x) the lower ordinate 

set of ~-'~=1 ~"" II 

9.6 CASE III. As in 9.3, if (X, .4) is a standard Borel structure, we can fill the 

gaps in O by means of Mauldin's theorem, so that Theorem 9.4 then applies even 

in Case II. 

9.7 PLANAR DECOMPOSITION Finally we remark that (as with the theorem of 

9) the theorem in 9.6 contains the planar decomposition theorem of Rokhlin [10] 

and the author [5] (see also [7] and [2]). For a suitable strict disintegration of the 

given standard (a-finite) measure space provides a transition kernel 7 in which 

(X, .~) is a standard Borel structure with a (a-finite) measure p. In the resulting 

planar model for 7, the atoms of the vertical factor have been taken care of, and 

we have only to adjust X so as to separate out the p-atoms. 
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